Distributed QoS Control

Scott Jordan
University of California, Irvine

New Ideas

New Ideas

- Build connections between characterizations of traffic flows, QoS requests, and network resource availability
- Negotiations between network and user agents regarding QoS
- Minimize information exchange using price & demand

Impact

Impact

- Reservation of network resources for each traffic flow or aggregates of flows in integrated service architectures
- Priority marking of packets in differentiated service architectures
- Automate resource management and QoS management tasks

Resource Allocation: User - Network Interface

Research Projects: Integrated Services

Research Projects: Differentiated Services

Pricing: Questions

Timeline

Loss surface for a class of on/off sources

Utility function for a class of on/off sources

Cost for a class of on/off sources under fixed prices

Surplus for a class of on/off sources under fixed prices

Optimal resource allocation under a fixed price ratio

Optimal class loss under a fixed price ratio

Theorem: Minimum cost is a decreasing convex function of loss probability

Optimal resource allocation under increasing prices on bandwidth

Optimal resource allocation under increasing prices on bandwidth

Optimal loss under increasing prices on bandwidth

Convergence using pricing

Utility gain with 2 classes: pricing versus non-pricing

2 classes with 500 on/off sources in each class

class 1: P(on)=0.3036, max loss = 6.8%

class 2: P(on)=0.3300, max loss = 2.2% (higher mean rate, more demanding)

BW supply varied

number of sources in class 2 varied

Non-pricing = allocate BW & BF proportional to number of sources in each class

Utility gain with 2 classes: pricing versus non-pricing

2 classes with 500 on/off sources in each class

class 1: P(on)=0.3036, max loss = 1% (more demanding)

class 2: P(on)=0.3036, max loss = 10%

BW supply varied

number of sources in class 2 varied

2 classes with 500 on/off sources in each class

class 1: P(on)=0.3036, max loss = 1% (more demanding)

class 2: P(on)=0.3036, max loss = 10%

BW supply varied

Resource allocation with 2 classes: pricing versus non-pricing

2 classes with 500 on/off sources in class 1 & varying number in class 2

class 1: P(on)=0.3036, max loss = 1% (more demanding)

class 2: P(on)=0.3036, max loss = 10%

number of sources in class 2 varied

Utility gain with 2 classes: pricing versus non-pricing

2 classes with 500 on/off sources in each class

class 1: P(on)=0.3036, max loss = 1%

class 2: P(on)=0.4000, max loss = 1% (higher mean rate)

BW supply varied

number of sources in class 2 varied